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The effect of dissolution on the growth of 
the Fe2AI, interlayer in the solid iron -liquid 
aluminium system 

V. N. Y E R E M E N K O ,  Ya. V. N A T A N Z O N ,  V. I. D Y B K O V  
Institut Problem Materialoznavstva, Kiev 252142, USSR 

Using both a parabolic law for crystal growth and an exponential law for dissolution of 
solids in liquids, an equation describing the diffusion-controlled growth of a single-phase 
intermetallic layer has been derived. This equation enables calculation of the interlayer 
thickness as a function of time under given conditions of interaction of a solid metal with 
a liquid one. The growth rate of the Fe2AIs interlayer follows the predicted time 
dependence. 

1.  I n t r o d u c t i o n  

The formation of a brittle-layered intermetallic 
phase during the interaction of a solid metal with 
a liquid one (examples include hot-dip coating, 
soldering, built-up welding, etc.) results in a sharp 
deterioration of the joints mechanical properties 
and hence it is necessary to use interaction 
conditions which prevent the formation of thick 
intermetallic layers. Obviously, the interlayer 
thickness can be reduced by increasing the solid 
metal dissolution rate. It seems at first sight that 
at a certain dissolution rate, the interlayer would 
disappear completely; more thorough analysis 
shows that this initial conclusion is not the case, at 
least in the case where atomic diffusion is the rate- 
controlling step during growth of the interlayer. 

In most cases of practical interest it is necessary 
to know the maximum possible vlaue of the inter- 
layer thickness under given conditions of the solid 
metal-liquid interaction. The purpose of the pres- 
ent work is to answer this and related questions. 

The Fe-A1 system was selected for study 
because of its practical applications and because 
of the convenient experimental conditions which 
can be used to check the theoretical predictions. 

2. Theory 
2.1. Dissolution of a solid metal in a 

liquid metal 
The dissolution of a solid metal in a liquid metal 
is described either by the equation 

d c =  s 
dt k-(csv - c )  (1) 

or by the integrated form (initial condition: 
c = 0 at t = O) 

where c is the concentration of the dissolved metal 
in the bulk of the melt measured at time, t, Cs is 
the saturation concentration, k is the dissolution 
rate constant, s is the specimen surface area and 
v is the melt volume. 

Equation 1 was proposed to describe the 
dissolution of solids in liquids by Shchukarev in 
1896, Noyes and Witney in 1897, Brunner in 
1904 and Nernst in 1904, but it was Nernst who 
laid the principles of the dissolution theory [1]. 
According to the Nernst theory, the dissolution 
rate constant can be written as follows 

D 
k = ~-, (3) 

where D is the diffusion coefficient of the dis- 
solved metal and ~ is the thickness of the diffusion 
boundary layer. Naturally, in this case the dis- 
solution process is regarded to be diffusion con- 
trolled, i.e. the diffusion of the solute atoms 
through the diffusion boundary layer is the rate- 
determining step during dissolution. 

Note that, for well-stirred systems, Equation 
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1 follows immmediately from Fick's first law [1 ]. 
Indeed, in this case the concentration of the dis- 
solved metal may be considered to be uniform 
everywhere in the bulk of the melt at any time, 
except for the region of the diffusion boundary 
layer, in which the concentration increases almost 
linearly with distance in the direction normal to 
the solid-liquid interface from the bulk value up 
to the saturation concentration, so that 

~c c - -  C s 
- ( 4 )  

ax 

Inserting this expression into Fick's first law 
gives the flow ] as 

D 
/ = ~- (cs  - c ) .  ( s )  

Taking into account that the flow, ], can be 
written as 

v dc 
/ = - - -  (6) 

s dt 

then Equation 1 is obtained. 
Further refinement of the dissolution theory 

enables the thickness of the diffusion boundary 
layer to be calculated. For a rotating disc, the 
surface of which is equally accessible from the 
view-point of  diffusion 

6 = 1.61D1/3vl/6CO -in, (7) 

where v is the kinematic viscosity of the melt 
and co is the angular speed of disc rotation [2]. 

Hence, from Equation 3 

k = 0.62D 2/av-u66ol/2. (8) 

This equation is valid if the Schmidt number, 
Sc, (Sc = v/D) exceeds 1000, but in the l iquid- 
metal systems Sc < 1000. This is why the follow- 
ing expression appears to be preferable: 

k = 0.554I-1D2/aV-1/6CO 1/2, (9) 

where I = f (Sc )  [3]. Equation 9 is applicable for 
S c > 4 .  

2.2. G r o w t h  o f  the  i n te r l aye r  
The process being analysed is the formation of an 
intermetallic compound, AB, at the interface 
between a higher melting-point solid, A, and a 
liquid, B, see Fig. 1. 

There are two simultaneous processes taking 
place. Firstly, the interlayer growth as the A and 
B atoms diffuse across the AB layer in the opposite 
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Figure 1 Schematic diagram to illustrate the growth and 
dissolution of an intermetallic compound AB at the 
solid-liquid interface. 

directions and react at the AB-B and A-AB inter- 
faces to form more intermetallic, AB. Secondly, 
the dissolution of AB into the liquid to feed the 
refractory metal A into the liquid wtaich is under- 
saturated with A. 

There are therefore three interfaced velocities: 
(a) The movement of the AB-B interface, say, 

to the right as A atoms diffuse across AB towards 
the AB-B interface and react with B atoms. 

(b) The movement of the A-AB interface to 
the left as B diffuses towards this interface and 
reacts with A. Here we shall consider the total 
growth of the interlayer, but not the partial one 
to the right and to the left separately. It should 
also be noted that the interlayer is assumed 
to be present at the A - B  interface from the very 
beginning of the solid-liquid interaction and 
hence the early (kinetic) stage of its growth is out- 
side the scope of our consideration. 

(c) The movement of the AB-B interface also 
to the left as AB dissolves into the liquid. 

2.2. 1. Growth o f  the interlayer in the 
case o f  a saturated solut ion 

Consider first the growth of the interlayer from 
the saturated solution, i.e. the liquid-metal 
solution saturated with the dissolving metal. It 
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seems to be well established now that in this 
case the growth rate is inversely proportional to 
the interlayer thickness, x, available 

dx ka 
- (10) 

dt x 

where kl is the interlayer growth-rate constant. 
The thickness of the interlayer increases in 

accordance with the parabolic law (initial con- 
dition: x = 0 at t = 0) 

x = (2kl 01/2. (11) 

Equation 11 is valid if the interlayer growth 
is diffusion controlled. In other words, the overall 
rate of the interlayer growth is determined by the 
rate of atomic diffusion through the interlayer. 
The other processes taking place at the sol id-  
liquid metals interface, namely, wetting, nucleating 
a new phase and a chemical reaction between the 
metals leading to the formation of an intermetallic 
compound, are assumed to take only a negligible 
portion of the total duration of the solid meta l -  
liquid metal interaction to complete and hence 
these processes are considered not to affect the 
interlayer growth. 

2.2.2. Growth o f  the interlayer in the case 
o f  pure liquid metal 

As mentioned above, the diffusion boundary 
layer is rapidly formed at the solid-liquid inter- 
face in which the concentration of the dissolved 
metal near the solid is regarded as being equal to 
the saturation concentration. This means that the 
boundary conditions for the interlayer growth are 
the same in both saturated and non-saturated 
solutions. It seems therefore quite reasonable to 
suppose that the interlayer growth-rate constant, 
kl ,  is independent of the degree of saturation of 
a liquid metal with a dissolving one and has the 
same value in both saturated and non-saturated 
solutions. Hence, the only distinction between 
these two cases is a movement of the liquid 
metal-interlayer interface into the solid metal side 
due to the interlayer dissolution in a non-saturated 
solution, whereas in a saturated solution this dis- 
solution does not occur. 

Then, the equation describing the growth of 
the interlayer under conditions of its simultaneous 
dissolution in liquid metal should involve a term 
taking into account the rate of dissolution. The 
linear rate of dissolution and the thickness of the 
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interlayer dissolved can easily be found from 
Equations 1 and 2. 

Since the concentration, c, can be given by 

rn 
e = - -  (12) 

V 

where m is the mass of the solid metal dissolved 
into the melt, the concentration can be written 
in terms of the thickness, y, of the interlayer 
dissolved as follows: 

c = P~atcpsY, (13) 
V 

where the Pint is the density of an intermetallic 
compound and q~ is the content of the more 
refractory metal in an intermetallic compound. 

Equation 13 takes account of the fact that it 
is an intermetallic compound formed at the sol id-  
liquid interface and not the solid metal itself that 
is being dissolved in the melt. Using Equation 13, 
and assuming the melt volume to be constant, we 
obtain from Equations 1 and 2 

and 

where 

dy 
- -  = b exp (--at) (14) 
dt 

b 
y = - [I - -exp ( - -a t ) l ,  (15) 

a 

ks  c s k 
a = - - ;  b -  y pmtq~" 

In the case of a linear dependence between the 
melt volume and thickness of the interlayer dis- 
solved, Equations 14 and 15 are the same but the 
initial volume, v, should be replaced by the volume 
of saturated solution, v s [4]. 

From the above, it is clear that the expression 
for the rate of growth of the interlayer thickness is 

dx k 1 
- b exp (--at). (16) 

dt x 

Equation 16 expresses the difference between 
the rate of the interlayer growth (the first term on 
the right-hand side of Equation 16) and the rate 
of its dissolution (the second term on the right- 
hand side); these processes occur simultaneously. 

It is difficult, if not impossible, to solve 
Equation 16 [5, 6]. Let us first analyse the limiting 
cases. 

(1) I f k ~ O  or t ~  or s / v - ~ ,  then dx / d t ~  



kl /x .  Hence, in this case the thickness-time 
relationship is close to the parabolic law. 

(2) If  sly -+ O, then 

dx k 1 
- -  -~ - - - - b .  ( 1 7 )  
dt x 

The solution to this equation is 

kl 1 x 
b-- i In 1 - -bx /k l  b - t. (18) 

If 
k 1 

x = -~-, (19) 

then dx /d t  = 0. This means that a steady state is 
achieved with equal rates of growth and dissolution 
of the interlayer. Equation 19 gives the maximum 
value of the interlayer thickness possible under 
conditions of  a constant dissolution rate, b. In this 
case the interlayer thickness tends asymptotically 
to the maximum value Xmax = kl /b  but, of course, 
it never exceeds this value. 

It should be noted that the initial increasing 
part of thickness-time curves is described by 
Equation 18. In order to show this, let us rewrite 
Equation 14 in the form 

dy = b 1 - - a t +  t - . . .  (20) 
dt 2 6 

If t -+ 0, then dy /d t  -~ b and Equation 16 is 
simplified to Equation 17. The limit of applica- 
bility for Equation 18 can easily be estimated 
because the series in Equation 20 is an alternate 
one. It is well known that the sum of the 
remainder of an alternate series does not exceed 
the value of the first neglected term. Hence, 
Equation 18 can be used until at is fairly small 
compared to unity. 

An attempt was made to solve Equation 16 by 
the step-by-step approximation method, using 
xo)  = (2k i t )  u2 as the first approximation [4]. 
Here the subscript (1) denotes the serial number of 
approximation. The following equation was 
obtained as the second approximation 

x(2) = ( 2 k i t )  I / 2 - b [ 1  - -exp  (--at)] .  (21) 
a 

Equation 21 expressed the difference between 
the thickness of the interlayer, which would grow 
in a given time if the dissolution did not occur, 
and the thickness of the interlayer which dissolved 
in the same given time. Substituting Equation 21 
in place of x into the denominator on the right- 

hand side of  Equation 16, we obtain a differential 
equation for the third approximation 

d x ( a ) _  kl 
- - - - - b  exp (--at).  (22) 

dt  x(2) 

But the first term of Equation 22 cannot be 
integrated precisely. To facilitate the solution of 
Equation 22 let us expand exp (-- at) in the term 
kl/x(2) in a power series and keep only two first 
terms of the expansion. 

Then, 

and 

dx(o _ kl 
b exp ( - -a t )  (23) 

d t  X(1 ) - -b t  

• 

----2k ln(1 
x(a) b (2ka) ~] 

b 
[1 -- exp (-- at)]. (24) 

G 

In order to reveal the distinction between 
Equations 21 and 24 let us rewrite Equation 24 
as follows 

x(3) 
2 k l  [ Z 2 Z 3 

= -g- z + 3 - + 7 + . .  J 
b 

- - - [ 1  -- exp (--at)] ,  (25) 
a 

where z = btl/2/(2kl)l/2; 0 <<. z < 1. 
If  only the first term of the power series 

expansion is retained, then Equation 24 becomes 
Equation 21. But the neglected terms are positive. 
Hence, the first term of Equation 24 is greater 
than the first term of Equation 21. This means 
that the dissolution causes some an increase in the 
interlayer growth rate. This result at first sight 
seems improbable; however, the same conclusion 
can also be made immediately from Equation 16. 
Indeed, the dissolution decreases the value o f x  in 
the denominator and consequently increases the 
rate of the interlayer growth. Hence, the observed 
thickness is not the simple difference between the 
thickness of the interlayer which would grow in 
the absence of dissolution, i.e. in saturated sol- 
ution, and the thickness of the interlayer which 
dissolved in a given time. For this reason, it is 
convenient to split the solution to Equation 16 
into three parts by writing [4] 

x = (2ki 0 I/2 + f ( t )  - - b [ l  - -  exp (--at)] .  (26) 
s 
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Each term of Equation 26 has a simple physical 
interpretation. The first term expresses the thick- 
ness of the interlayer which would grow in a 
saturated solution in a given time. The third term 
gives the thickness of the interlayer which was 
dissolved in a given time. The second term takes 
into account an increase in the interlayer thickness 
due to "the effect of dissolution" which may be 
called "the compensation function". It is obvious 
that f ( t )  1> 0 for t ~> 0. One way of finding "the 
compensation function", f(t) ,  is apparent: write 
Equation 21 in the form of a power series and sub- 
stitute it for x in the denominator of Equation 16. 
The differential equation so obtained can easily 
be solved by term-by-term integration. Then an 
approximate solution to Equation 16 is obtained 
in which f ( t )  will be written in the form of a 
power series. By repeating this procedure, further 
refinement of an approximate solution can be 
achieved. However, there is one draw-back to this 
method: it is very time consuming because the 
more the approximate solution is refined the 
slower the convergence of the series. 

For this reason, the numerical integration 
method of obtaining a solution is preferable but 
unfortunately it cannot be carried out at the initial 
condition of x = 0 at t = 0 because in this case 
k l / x  -~ oo. The "initial" condition x = Xo at 
t = ro must therefore either be calculated from 
Equation 18 at small t using a known value of the 
dissolution rate constant or should be found 
experimentally. Then a time dependence of the 
interlayer thickness can be calculated under given 
conditions of interaction of a solid metal with a 
liquid metal. 

From the above, it follows that the general 
solution to Equation 16 is a smooth continuous 
non-negative function of t which exhibits no peaks 
and which lies somewhere between the curves 
defined by Equations 11 and 18. Non-negativity 
of the thickness-time relationship follows from 
the fact that the solution to Equation 17 describing 
the interlayer growth at the maximum dissolution 
rate is non-negative. This means that the absence 
of the interlayer at the solid-liquid interface 
cannot be explained from the view-point of the 
diffusion processes only since the interlayer thick- 
ness has a definite value at any possible dissolution 
rate and x = 0 only if t = 0. In order to explain 
the absence of the interlayer at the interface 
during the interaction of a solid metal with a 
liquid metal the peculiarities of nucleation and the 

rate of chemical reaction between the metals 
should also be taken into account. 

3. Experimental procedure 
3.1. Materials and specimens 
The following materials were used for the inves- 
tigation. 

(a)High-purity aluminium: AI: 99.995wt%; 
Fe, Ti, Si, Cu and Zn > 1 x 10-3wt% each). 

(b) Pure iron: Fe: 99.98 wt %; C: 4 x 10 -3 wt%; 
N: 3 x 10-awt%; AI: 3 x 10-3wt%;Ni:  1 x 10 -3 

wt %. 
The rods, 12ram in diameter, were prepared 

from the iron powder by arc-furnace melting 
under an argon atmosphere. Cylindrical specimens, 
11.28 + 0.01 mm in diameter and 6 mm in height, 
were then machined from these rods. Half of the 
Fe specimens was used as-received, i.e. in a rapidly 
solidified condition, while the remaining were 
subjected to a heat treatment which involved 
annealing in steps: 1800see at 1000~ and 
3600see at 700 ~ C. The rate of cooling from 
1000 to 700~ was 0.2~ -1 and the rate 
of Cooling from 700~ to room temperature 
was about 0.3 ~ Csec -1. It should be noted that, 
although such a heat treatment is not necessary 
for the present investigation, it will be necessary 
for future investigations. Both annealed and 
unannealed specimens were mechanically polished. 
After being polished the specimens were not 
annealed, thus facilitating nucleation on the solid 
metal surface. 

Immediately before the experiment the iron 
specimen was pickled in a 1:1 v/v HCI:H20 
solution, rinsed in absolute ethanol and dried. The 
specimen was then pressed into high-purity graph- 
ite tubes, 16 .0+0 .2mm in diameter, to protect 
the lateral surface of the specimen from the melt. 
Graphite had no observable effect on the rate of 
the interaction. 

3.2. Exper imenta l  details,  
A rapid-quenching device employed in this work 
has been described in detail elsewhere [7]. The 
experimental runs were performed by the rotating 
disc technique. 

24.0 g of aluminium was melted under a flux 
(KC1, 40wt%; LiC1, 30wt%; NaC1, lOwt%; 
Na3A1F6, 5wt%; ZnCI~, 15wt%) into a 26mm 
inside diameter alumina crucible. The flux was 
used both to prevent the oxidation of the alu- 
minium and to pre-heat the iron specimen up to 
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the temperature of the investigation. For the 
latter purpose, the specimen was dipped into the 
crucible so that it was beneath the surface of the 
flux but above the surface of aluminium. Fe dis- 
solved slightly in the flux. To ensure the uniform 
dissolution of the solid metal surface in the flux 
the iron specimen was rotated (rotation rate, 
co = 6.45 rad see- l )  during pre-heating. It should 
be noted that specimen dissolution in the flux 
caused a negligible contamination of the alu- 
minium melt (less than 0.05 kg m-a  Fe). 

When the temperature had equilibrated (after 
400 to 500see) the rotating iron specimen was 
dipped into the aluminium melt so that the dis- 
tance between the crucible bottom and the disc 
surface was 15.0-+0.5mm. At the end of the 
experiment, the crucible together with the melt 
and the iron specimen was "shot" into water to 
arrest the reactions at the interface. Note that the 
specimen continued to be rotated until crystalliz- 
ation of the melt. It took between 2 and 3 sec for 
the aluminium specimen to cool from the investi- 
gation temperature to room temperature. 

The experiments were performed at 700 + 5 ~ C 
for 50 to 300 sec. The angular speed of the disc 
rotation was 24.0 -+ 0.1 rad sec -1. 

After the experiment, the bimetallic specimen 
obtained was cut along the cylinder axis, ground 
and both polished and etched electrolytically using 
the "Elypovist" electropolishing apparatus ("Carl 
Zeiss", DDR) and special electrolytes [8]. Metallo- 
graphic and X-ray techniques were used to inves- 
tigate the interlayer. 

The aluminium part of the specimen was 
analysed to find its Fe content by a photometric 
method. The relative error of determination did 
not exceed + 5%. 

4 .  Resul ts  and discussion 
4.1. Dissolution kinetics 
The dissolution data obtained is shown in Fig. 2. 
The exponential law of dissolution, Equation 2, 
can be written as 

in C s k s t  (27) 
C s - -  C '/2 

Hence, a plot of in Cs/C s - -  c against s t / v  should 
be a straight line, as confirmed in Fig. 3. It is clear 
that, in this case, the dissolution rate constant and 
the diffusion coefficient could be calculated using 
Equations 27 and 9, respectively. The following 
values were used for calculations: 

o i "  

r E 

J4 

o J *  
2 / 

/:/~ 
1 2 '3 

s~'/W ( x 10 3 see m -1) 

Figure 2 Concentration of iron in aluminium plotted 
against st ir .  

(a) c s = 60 + 3 kgm -3, from [9]; 
(b) s l y  = 10.0 +- 0.2m -1" 
(c) ~ = 4.79 x 10-Tm2sec -1, from [10]; 
(d) co = 24.0 -+ 0.1 rad sec -1. 
The density of the Fe-A1 melts depends only 

to a small extent on the Fe content. For this 
reason, the density of the aluminium melt, PAl, 
was assumed to be constant up to the saturation 
concentration, PAl = 2.40 x 103 kgm -3 [11]. 

The following value of the dissolution rate 
constant, k, was obtained from the experimental 
data by the least-squares fit method (0.95 con- 
fidence limit): 

k = (3 .8+0 .1 )x  10-Smsec -1 

The approximate value of the diffusion coeffi- 
cient, D, was first calculated from Equation 8; the 
Schmidt number and the correction factor, I, [3] 
were then found, and the precise value of D was 
calculated from Equation 9 giving 

0.12 

o/Y 
f c 0.08 

o/Y~ 
0.04 / oJ 

o J 
st/V{xlO3sec m -1 ) 

Figure 3 Ln Cs/C s - -  c plotted against s t /v  for the data of 
Fig. 2. 
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D = 1.24 x 10-gm2sec -1. 

The relative error of determination was estimated 
as +- 10%. 

It should be noted that this value represents the 
coefficient of diffusion of the Fe-atoms through 
the diffusion boundary layer. Hence, its value is 
closer to that of the coefficient of diffusion of the 
Fe atoms into the Fe-saturated aluminium melt 
than it is to that of the Fe atoms into pure liquid 
aluminum because the average Fe-concentration 
in the diffusion boundary layer varies with time 
from Cs/2 up to c s if the initial iron concentration 
in the melt is zero. Moreover, a linear dependence 
of In cs/c s - c  on st/v for a wide concentration 
range (the concentration varied from 0.01 to 
0.75Cs) which has been observed for the alu- 
minium-transition metal (Ti, V, Cr, Fe, Co, Nb, 
Mo, Ta, W) systems [7, 9], indicates that D is 
independent of concentration or, alternatively, 
that D and 6 change in such a way that k remains 
a constant. The latter assumption seems impro- 
bable; it is not surprising that D has been found to 
be independent of concentration in the systems 
listed above, indeed, in these systems the saturation 
concentration is comparatively low and, hence, 
an appreciable influence of concentration on the 
diffusion coefficients would not be expected. 

4.2. Growth of the Fe2AIs interlayer 
In the Fe-saturated aluminium melt the Fe2Als 
interlayer growth follOws parabolic-law kinetics 
[12]. The presence of parabolic-law kinetics indi- 
cates contro! by diffusion through the interlayer 
thickness and not control by either interface 
reaction. Interface control would give a linear time 
dependence for the interlayer thickness. 

A single-phase interlayer consisting of the 
F%Als intermetallic compouad and having a very 
distinctive, tongue-like structure, grows at the 
solid iron-liquid alurninium interface at 700 ~ C, 

see Fig. 4. 
The first experiment conducted was a control: 

the rotating iron specimen (after pre-heating) was 
immersed in the aluminium melt and immediately 
the crucible was "shot" into water. Examination 
of the bimetallic specimen obtained in such a way 
showed that an Fe2Als interlayer about 1/~m thick 
had been formed at the Fe-A1 interface. This 
shows that Wetting and nucleation were relatively 
fast processes and took not more than between 1 
and 3 sec to complete. This time, 1 to 3 sec, is a 

Figure 4 MicrogIaph of the Fe-A1 interface. Tempera- 
ture = 700 ~ C; Rotation rate = 24.0 tad sec -~ ; t = 250 sec. 

small portion of the total duration of the exper- 
iment, 50 to 300 sec, and the interlayer thickness 
formed in this time, 1/~m, is a small portion of the 
interlayer thickness measured, 40 to 90 #m. 

The experimental points are shown in Fig. 5 
(circles). The average value of the maximum height 
of the Fe2Als crystallites was used as a measure 
of the interlayer thickness. The relative error of 
determination of the interlayer thickness was 
about -+ 15%. 

The theoretical thickness-time relationship 
was calculated from Equation 18 using the fol- 
lowing values: 

(a) kl = 1.0 x 10-1~ -1, from [12]; 

(b) Pint = (4.1 + 0.1) • 103kgm -a 
(c) q~ = 0.453 (the mass fraction of Fe in 

Fe2Als). 
The linear rate of dissolution, b =  1.16x 

10 -6 m sec -1, was taken as an arithmetic mean at 
the end of the b values at the start, t = O, and 
at the end, t - - 3 0 0 s e c ,  of the experiment 
(bt= o = csk/Pintq)= 1.23 x 10-6msec -1, bt=3oo = 
bt=o exp (--at) = 1.10 x 10-6msec-1) .  It is seen 
that the linear rate of dissolution, b, can be con- 
sidered to be constant within -+ 6%, and, hence, 
Equation 18 should describe the F%AIs interlayer 
growth with a sufficient degree of accuracy. The 
calculated curve is plotted in Fig. 5 (Curve 2);the 
functions xo) = (2ki t )  m, (Curve 1); x(2) = 
(2ka t) 1/2 - (b/a)[ 1 -- exp ( -  at)], (Curve 3); and 
Yl*e~gl~ = (b/a)[1 --exp (--at)] ,  (Curve 4), are also 
given for comparison. 

From the presented data it can be concluded 
that the agreement between the theoretical plot 
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Figure 5 Thickness-time relationships: (1) . x0) = 
(2k~t) 1'2, from Equation 11; (2)(k~/b2)ln[l/[1 - 
( bx / k l ) ] } - - x /b= t ,  from Equation 18; (3) x(~)= 
(2kt t )~2--(b/a)[1--exp(--at)] ,  from Equation 21; 
(4) yF%A1 s = (b/a)[1--exp (--at)], from Equation 15. 
Open circles are the experimental determined points. 

(Curve 2 in Fig. 5) and the experimental points 
(open circles in Fig. 5) is satisfactory. A certain 
disagreement is observed near the initial increasing 
part of the curve. The reasons for this are the 
following. 

(1) It was assumed that the linear rate of dis- 
solution was constant whereas it decreased almost 
linearly from bt= o to bt=3o o. As a result, the 
theoretical curve over-estimates the interlayer 
thickness for the first half (0 to 150sec)and 
underestimates it for the second half (150 to 
300 sec). This reason alone, of course, cannot lead 
to the observed disagreement since the error intro- 
duced by this assumption is small compared to the 
experimental errors (6 and 15%, respectively). 

(2) There is an anisotropy of the FeEAls crys- 
tallite growth. Each tongue-like crystallite (see 
Fig. 4) represents a single crystal, the axis of which 
coinsides with the c-axis of the unit cell [12]. The 
maximum value of the Fe2Als crystallite growth- 
rate is observed in the direction of the c-axis; this 
is due to the peculiarities of  the Fe2Ms lattice 
structure (for details see [12]. However, the maxi- 
mum values of the growth rates of the F%A15 
crystallites are observed only if the angles between 
the c-axis and the original F e - M  interface are 90 ~ 
If these angles considerably differ from 90 ~ then 
neighbouring crystallites hinder each other's 
growth. It is clear that at the early stages of the 
interaction a large number of the spontaneously 
orientated F%Als nuclei was formed on the iron 
surface and this was one reason for a decrease of 

the growth-rate constant, kl, from its maximum 
value. 

During dissolution, the unfavourably orientated 
Fe2Als nuclei gradually disappear whereas the 
Favourably orientated ones continue to grow. As a 
result, the interlayer assumes the tongue-like 
morphology and kl attains the maximum value. 
This is another aspect of the influence of dis- 
solution on the Fe2Als interlayer growth. 

5.  Conc lus ions  and r e m a r k s  
The above consideration is based upon Fick's 
first law and assumes a linear change of concen- 
tration with distance into both the interlayer and 
the diffusion boundary layer. Hence, the results 
presented here would be valid for solid-liquid 
systems in which: 

(a) low solubility of a solid in a liquid is 
observed; 

(b) an intermetallic compound having a narrow 
homogeneity range is formed. 

If these conditions are satisfied, then the com- 
plete thickness-time relationship can be calcu- 
lated from Equation 16 knowing the following: 

(1) the interlayer growth-rate constant in the 
saturated melt, 

(2) the melt density, 
(3) the saturation concentration, 
(4) the density of the intermetallic compound, 
(5) the solid metal surface area exposed to the 

liquid metal attack, 
(6) the melt volume, 
(7) the dissolution rate constant, 
(8) the content of the more refractory metal in 

the intermetallic compound. 
The related parameters, namely, the degree of 

saturation of the melt with the dissolving metal 
and the thickness of the solid metal dissolved can 
also be determined using Equations 2 and 15, 
respectively. In the latter case, the product pmtq~ 
should be replaced by the solid metal density. 

Equation 16 gives the upper limit for the 
interlayer thickness. The interlayer thickness 
observed in a real metallic system cannot exceed 
the value predicted by Equation 16 but it can be 
far less than the predicted value if the wetting, 
nucleating or chemical reaction between the 
metals is an insufficiently fast process. 

The main conclusion following from the pre- 
sented results is that the interlayer growth cannot 
be considered as independent of its dissolution 
(compare the theoreticaly determined curves, 
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Curves 2 and 3, in Fig. 5, with the experimentally 
determined points, open circles in Fig. 5). Hence, 
it is impossible to avoid the formation of the 
interlayer by increasing the dissolution rate if the 
interlayer growth is controlled by atomic diffusion. 
The reasons for the absence of the interlayer 
during the solid metal-liquid metal interaction 
lie in the peculiarities of nucleation or chemical 
reaction between the metals. It should be empha- 
sized that the absence of the interlayer in the early 
stages of the interaction and its subsequent for- 
mation does not affect the dissolution kinetics [7]. 

Two remarks concerning the rotating disc 
method should be made. 

(a) The formation of the interlayer deterioriates 
to a large extent the result obtained by this 
method if the weight loss of the solid specimen is 
used to control the run of the dissolution process 
and if the duration of experiment is short. In this 
case, the weight loss due to the dissolution and an 
increase in the specimen weight due to the inter- 
layer formation are of the same order of magni- 
tude (this can be seen, for example, from Curves 
2 and 4, in Fig, 5). If  the experimental para- 
meters remain unchanged during the investigation, 
then a good reproducibility of results may be 
observed, since this error is systematic, but it is 
clear that the final result will not be correct. The 
same can be said about the method of control 
based on measurements of the specimen dimen- 
sions. A change in the specimen dimensions can 
be measured only to within an accuracy of plus 
or minus the available interlayer thickness. These 
observations were first noted as far back as 1970 
[13]. Since that time a number of studies have 
been performed, using the rotating disc method, 
but in only a few of these were the above points 
taken into account. This is one of the reasons for 
the discrepancies in the results obtained to date. 

( 2 )  When c ~ Cs, then even a comparatively 
small error in the determination of the concen- 
tration results in large error in calculating the 

dissolution rate constant and, as a consequence, 
in the value of the diffusion coefficient. This is 
due to the small value of the denominator (c s - c) 
in Equation 27. For this reason, the data obtained 
at concentrations close to the saturation concen- 
tration should be used with a great care. 

The concentration range from 0.01Cs to 
0.75 c s is the optimum one for calculating the dis- 
solution rate constants from the data obtained 
by_ the rotating disc method; of course, these 
limits are somewhat arbitrary. In general, the 
lower limit is determined by the sensitivity whereas 
the upper limit is determined by the accuracy of 
the method which is employed to control the run 
of the dissolution process. 
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